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ABSTRACT

The linear stability analysis of a periodic orbit,

X (t), of a dynamical system _ = F(X), is related to the %N

anomalous ferromagnetic resonance properties of ferrites.

It is shown to have a continuous sequence of normal mode ,

problems associated with it. This sequence defines a

natural set of coordinate axes which allow the stability

analysis to be put in a form which has already been dealt

with analytically in the ferrite resonance theory. A

simplification which allowed the basic experimental

properties of the ferrites to be accounted for is applied

to the stability analysis. The simplified analytic

solution is obtained for three-mode systems, its properties - .... --

and consequences are discussed and it is checked against I -

some rigorous results. . ...
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1. Introduction

Many of the dynamical systems of physics, chemistry and astronomy

can be described by an equation of the form

X = F(x) (1.1)

where X and F are n-dimensional quantities; and F is in general a

non-linear function of X , depends on some parameter y , and haE no expli:it

t-dependence. Examples of such systems are the Rayleigh-Bernard cell, 1,2

and the Couette-Taylor flow system.
3

The linear stability, or the behaviour of solutions in the immediate

vicinity, of a given solution X (t) of (1.1) is given by the solution of

the stability equation:

x vt)x (1.2)

where
3F i

7. (t) = (1.3)
iii

O(t)

Here x(t) -X(t) -!(t) where X(t) is the coordinate vector of a test point

moving close to a reference point which is on the given orbit and has

coordinate vector X (t) . If X (t) is a stationary solution, 7(t) is

independent of t and solving (1.2) reduces to the diagonalizing of

_(0) If X (t) is a non-stationary solution, however, V(t) depends

on t . This t-dependence means that the stability analysis cannot be solved

by simply diagonalizing 1. For n > 2 the solution of (1.2) will usually

be very complicated and is in general not available in closed form.

21rPeriodic orbits, X( = + ) are commonly observed

1
experimentally. Some systems exhibit periodic motion at the onset of
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4
turbulence. In the case of periodic orbits, as outlined in Appendix 1,

the solution of (1.2) is known to contain important information about the

system. Firstly it indicates whether X_(t) is locally stable, and hence

whether it represents an experimentally observable state of the system. If

it becomes unstable, or bifurcates, a transition in the state of the

experimental system is predicted. At a normal bifurcation, a continuous

transition occurs and the stability solution predicts whether the new

state of the system is periodic or quasiperiodic. It also specifies what

the new frequency components appearing in the system's spectrum will be,

as well as which will be the fastest growing.

The aim of this paper is two-fold: firstly, to establish a connection

between the stability analysis of periodic orbits and the theory of anomalous

ferromagnetic resonance in ferrites;and secondly, to exploit this connection

to obtain, for three-mode problems, a simplified analytic solution which

still contains the essential information concerning the orbit's stability

and bifurcations.

Linear differential equationswith periodic coefficients, such as

5
(1.2), have been studied at length in their own right. Analytic solutions

are, however, generally not available. This paper shows that if the context

in which (1.2) arises, namely the stability of a periodic orbit, is

considered, rather than treating it mathematically as an isolated equation,

an approximate analytic solution of the n = 3 case can be obtained.

The stability analysis is shown, in Section 2, to have a continuous

sequence of normal modes associated with it. This observation is used, in

Section 3, to show that the stability analysis of periodic orbits is in

6
many respects similar to the theory f the anomalous ferromagnetic

resonance properties of ferrites. A simplified solution6 of that problem
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was able to account for the basic experimental facts. The sequence of

normal modes associated with the stability analysis is used in Section 4 to

define a natural set of coordinate axes. Transforming to these axes casts

the stability analysis into the same form as the ferrite theory, and the

corresponding simplification is made. In section 5 the simplified equations

are solved for three mode (n73) systems, and the properties and consequences

are discussed. This solution is then checked against some rigorous results in
Section 6.

2. A Continuous Sequence of Normal Mode Problems

2.1 Reduction to a Problem of Purelz Transverse Motion

The orbit X0(t) is said to be attracting or zable, if the

components of x(t) = X(t) - X(t) transverse to the orbit shrink to zero

as t . The behaviour, as t - , of the longitudinal component,

the component parallel to 0 (t) , of x(t) is not relevant to whether or

not X0 (t) is stable.

Further, to linear order in x(t), the longitudinal component does

not appear in the equations of motion for the transverse components. This

result is expected intuitively since the linearized theory describes motion

arbitrarily close to X(t) . In that region, X (t) will "look like" a

straight line. That is, there will be no characteristic length for

changes to occur along the line. In particular, motion transverse to it

will be independent of the position along it. A rigorous derivation of

this decoupling is given in Appendix 2.

Thus the longitudinal motion is not only less important than the

transverse motion, it has, to linear order, no effect on the transverse

motion. The linear stability of an orbit in a n-mode system can therefore

be reduced to an (n-l)-dimensional problem consisting only of the transverse

modes.
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It will be seen that the longitudinal motion is the source of the

time-dependence of the coefficients in the (n-l)-dimensional transverse

problem.

2.2 A Frozen Problem

A problem related to the stability problem will now be considered.

The longitudinal motion will be considered "frozen out" of the problem.

Pictorially this can be imagined in terms of trapping both the reference and

test points between two (n-l)-dimensional glass sheets transverse to X0 (t0 )

and intersecting it at X(t 0) These sheets are separated by an

infinitesimal distance and are "frictionless": they do not affect motion

transverse to X (t). Mathematically this frozen problem is achieved (see
-0

Appendix 3) by changing to a coordinate frame with one axis, axis n say,

to X(t ) and the others orthogonal to it. Then Xn(t) is setparallel t

equal to zero, without changing X(t) , where T runs over the transverse

directions.

With the longitudinal motion frozen out of the dynamics in this way,

the stability problem becomes an analysis of the stability of the fixed point

X(t0). This intuitively acceptable result is proven in Appendix 3. The

coefficients of the stability equations are then constants, and diagonalizing

the appropriate matrix reduces the problem to one of (n-l) independent

normal modes.

Thus at each point X_(t0 ) of the orbit, there is a set of normal

modes associated with the stability analysis.

2.3 The Full Stability Analysis

When the longitudinal motion is "unfrozen", and the complete dynamics
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considered, the properties of the associated normal modes will be modulated

in t , and t-dependent couplings between them will arise. These couplings

in general make an exact analytic solution unobtainable. The identification

of a sequence of associated normal mode problems means two things, however.

7
Firstly, for every orbit X (t) , of any dynamical system, there is a

natural set of coordinate axes in which to discuss stability. Secondly,

when this natural set of axes is used, the stability problem of a periodic

orbit X (t) = X (t+2! ) is seen to be in a form which has already been dealt-0 --UO V

with analytically in a different context. This correspondence is displayed

in Section III and exploited in Section 4.

3. The Ferrite Analogy

Attention will now be restricted to those cases where (t) is

periodic: X(t) = X0(t +-). The stability analysis of periodic orbits
ZZO V

will be shown to be similar to the theory of ferromagnetic resonance in

ferrites. 
6

Ferrites exhibit two anomalous effects in their microwave absorption

properties in ferromagnetic resonance experiments. Firstly the usual

resonance is observed to saturate at powers far below those originally

thought to be necessary for saturation. Secondly a secondary absorption

peak appears at values of the d.c. field below that required for resonance.

Suhl6 was able to account for the basic experimental facts,

analytically and with reasonable precision, by simplifying the equations of

motion of the magnetization and solving the simplified equations. He showed

that the uniform magnetization, precessing around the d.c. field under the

influence of the transverse microwave field, causes a complicated time-

dependent, but periodic, coupling between the spin waves in the ferrite.

The coupling caused by the precession can, under certain conditions, cause
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the spin waves to grow to large non-thermal values. Depending on the

conditions, these spin wave instabilities can lead to the two anomalous

effects described above.

Like the motion of the transverse components of x(t) , in the

stability analysis of a periodic orbit X0(t) , ihe excitations

of a ferromagnet, in the form of spin waves, can be regarded as small

amplitude motion and treated to linear order.

If the ferromagnet is a ferrite in the experiment just described,

though, the analogy can be taken further. In the absence of the periodic

coupling caused by the uniform precession, spin waves can be regarded as

normal modes of excitation. If the longitudinal motion is "frozen out" of

the stability analysis of X0(t) , the problem becomes one of a set of

normal modes. The periodic uniform precession in a ferrite produces coupling

between spin waves. The periodic longitudinal motion along X(t) produces

a periodic coupling of the normal modes of the frozen problem.

Suhl's analysis shows that, under appropriate conditions, certain

spin waves in the ferrite may have exponentially growing amplitudes. When

a stable periodic orbit X0 (t) bifurcates and becomes unstable, certain

components of x(t) have exponentially growing amplitudes.

Further, two general classes of bifurcations of periodic orbits

allow closer analogies to the ferrite resonance theory. In the first class,

the new stable orbit has a fundamental frequency equal to half that of the

original orbit. Thesebifurcations (for which one real eigenvalue of the

Poincare map passes out through the unit circle at -1 : see Appendix 1)
9,10

are observed and are referred to as subharmonic or period-doubling

bifurcations. At such a bifurcation componenns of x(t) with a frequency
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equal to half that of the original longitudinal motion grow exponentially

in amplitude. At the secondary ferrite absorption maximum, it is those

spin waves whose frequency is equal to one half that of the uniform precession

whose amplitudes grow exponentially.

In a second class of bifurcation of a periodic orbit (those bifurca-

tions for which a real eigenvalue of the linearized Poincare map pass out

through the unit circle at +1 : see Appendix 1) components of x(t) with

a frequency equal to that of the longitudinal motion grow exponentially in

amplitude. The premature saturation of the main ferrite absorption peak

6
was shown by Suhl to be due to the growth to large amplitudes of spin waves

whose frequency is equal to that of the uniform precession.

Thus, at the levels of both the equations of motion and their solutions,

the stability analysis of periodic orbits and the theory of ferromagnetic

resonance are very similar problems. Further, it will be seen that, if the

simplifying procedure suggested by Suhl is used in appropriate cases for both

problems, the equations of motion for the two problems become identical.

The analogy is summarized in Table 1 .

Despite the complexity of the equations of motion of the magnetization

field in the ferrites, Suhl 6 was able to account for spin-wave instabilities

which cause the two anomalous absorption effects and also, in the case of the

secondary absorption peakdescribe the state of the system beyond the insta-

bility threshhold. He used a synchronism argument to simplify the equations

of motion. Because of the analogy between the stability analysis of X(t)

and the ferrite resonance theory, and because of the success of Suhl's

approach in the latter case, the same synchronism argument will now be used to

simplify the stability analysis.
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Property Orbital Stability Ferrite Resonance

Small amplitude Transverse components Deviations of local
motion of x(t) magnetization from from

uniform average value

Source of Longitudinal motion Precession of uniform
t-dependent, around Xo(t) - magnetization around
periodic coupling frequency V d.c. field -

frequency v

Normal modes Normal modes of Spin waves
in absence of frozen problem
this coupling

Nature of Components of x(t) Spin waves with fre-
Instability with, for example quency v/2 (secondary

frequency = V/2 or V peak) or V (principal
acquire exponentially peak) acquire exponen-
growing amplitudes tially growing

amplitudes

Table 1



-10-

4. Simplification of the Stability Analysis

4.1 Suhl's Simplification

The simplification used by Suhl can be described, as follows. The

linearized equations of motion (in the ferrite, for the spin waves) and be

written as

j(t) = 4(t)y(t) (4.1)

where

27r
M(t) _(t + -)

In the absence of the periodic coupling (caused by the uniform precession

in the ferrite), [ is diagonalized and the coordinates y represent the

uncoupled normal modes of the problem. Suhl assumes that the effect of the

coupling is to change the t-dependence of the normal modes only by multi-

plication by prefactors which vary slowly with respect to the normal mode

frequencies.

When the elements of (t) are decomposed by complex Fourier trans-

forms, the Fourier components can then be classified as follows. With each

coordinate, yi . in Y there is associated a normal mode frequency vi

say. The k'th Fourier component of each element, M ij(t) , can be classified

according to whether or not kv + v. is within Y of V Those compon-
32 i hs1opn

ents which do satisfy this synchronism criterion were retained by Suhl.

They produce terms in each row of the right-hand side of equation (4.1)

with frequency close to that of the term in the same row on the left-hand

side. The components which do not satisfy this matching criterion were

discarded. Because their frequencies were separated by more than V/2

from the frequency of the term on the left-hand side, it was claimed that

the effect of these terms, particularly over long-time scales, will be small.
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A completely equivalent approach is to factor out the time dependence

of the normal modes in the absence of the periodic coupling. The coefficients

are then assumed to be slowly varying functions of time. The simplification

then consists of disregarding all those terms which must be rapidly varying

in time.

As indicated earlier, the success of this simplification in accounting

for the resonance properties of ferrites, and the analogy between the

resonance theory and the stability of periodic orbits, suggests using the

same simplification in the latter case. The use of a simplification is

also suggested by the fact that all the details of the solution of the

stability equation (1.2) are not usually required. The Poincar6 map

(see App. 1) is obtained by comparing the solution at two values of t

separated by the period of X0(t) . Thus any oscillations at harmonics of that

frequency will have no effect on the Poincard map. The linking number

(see App. 1), roughly the number of times X(t) twists around X0(t) , is

clearly a gross property of the solution: it is possible to perturb the

solution by adding many small oscillations and yet not change the linking

number at all. Thus any simplification,which only distorts the solution

slightly, may leave its most interesting properties essentially unchanged.

The simplification described earlier is most clearly implemented after

a coordinate transformation.

4.2 Stability Analysis: A Coordinate Transformation

The coordinate transformation to be performed will be a combination of

two transformations. The first, with transformation matrix G(t) ,will ensure

that one coordinate axis is parallel to the orbit at X0(t), i.e. parallel

to X0(t) . This transformation enables the transverse motion to be

decoupled from the longitudinal motion as described in §11. The second
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transformation, transforms the axes orthogonal to XO(t) so that they

coincide with the normal modes of the frozen problem. After this composite

transformation has been performed, the transverse components can be con-

sidered independently from the longitudinal component, the system is

described in terms of associated normal modes and the analogy with the

ferrite resonance theory can be exploited.

The details of this procedure are as follows. For simplicity a

three-mode system is assumed, but the generalization to n > 3 is immediate.

Let G(t) be any 3 x 3 matrix whose third column is

C3(=.(t)) = F(X(t)) = L(t) (4.2)

The first two columns of G, C T(G(t)), T = 1,2 are

chosen to be continuous periodic functions of t , and orthogonal to

C 3 (G(t)) , but otherwise arbitrary. Let I'(t) be the 2 x 2 matrix which

diagonalizes [G -(t)V(t)q(t)]I' (This prime notation will be used to

denote the two dimensional matrix (or vector) formed from the first two

rows and columns (or elements) of the primed three dimensional matrix

(or vector).) The coordinate transformation to be considered is given by

x(t) = J _(t)z(t) (4.3)

where

(t) = (t)( (4.4)
o 0 01

The stability equation (1.2) then becomes

z(t) = K(t)z (4.5)

where

K(t) = J_ (t)V(t)J(t) - JI (t)J(t) (4.6)
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As is shown in Appendix 2,

K 3(t) = 0 T = 1,2

That is the equations of motion of the transverse components of (4.5) are

independent of the longitudinal component. Considering only the transverse

components then replaces (4.5) by the two-dimensional equation

!'(t) = K'(t)z'(t) (4.7)

where K' (t) = K'(t+2n/v)

Further, it is seen from (4.4) that

[J_ 1J = ' IG ] 'E' (4.8)

By the definition of E', this is diagonal. The matrix [G- 1GJ' is

precisely the matrix which appears (see Appendix 3) in the stability analysis

of the frozen problem at X,(t) . The frequencies of oscillation of the

frozen normal modes at X(t) are therefore given by the imaginary parts

of the diagonal elements of [jI =j These frequencies oscillate

periodically about their average values. The average values of the frozen

normal mode frequencies will be taken as the characteristic normal mode

frequencies associated with the stability analysis.

Fourier transforming the terms in K'(t) gives

K'(t) = e m v t K'

eimVt D IM + C' (4.9)M -110 D 2Mn

where

.... ... ...... .. ....... .~ m l ll l ll - ' I ......... ..........u I I .......h i ,.. .
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DT T-iivt
{Zm Jo 

(t)e dt

mf

4.3 Simplifying the Stability Analysis

Following the simplification described in §4.1 then means that

TT'
only those terms K in (4.9) which satisfy the following criterion.

jIm(DT,O) - Im(DTO) + mvj 5 v/2

will be kept. This means that on the diagonal, {D,,, cTT:m T = 1,2, m+O}

will be discarded. All CT T  , T + T' will be discarded, except for
m

C T T I where qTT minimizes jIm(DT,)-Im(D~o+T'l Thus (4.7) becomes

wr(t) = i'(t)zl'(t) (4.10)

where TTT

-TT DT + CTT T =T'
K = TT 0 (4.11)

cTT ' e iqTT , T T 4 T'
qTT

While the case n = 3 has been emphasized, the treatment to this point

can be applied to any finite n . In the next section, however, only n 3

problems will be considered: (4.10) will be solved for the case of a general

three mode (n-3) system.

5. Three Mode (n*3) Problems

5.1 Solution of Simplified Stability Problem

The case of nonlinear, three mode (n=3) dynamical systems will now be

considered. Examples of such systems exhibiting periodic orbits are given
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in Refs. 9 and 12.

In these cases equations (4.10) and (4.11) give

D ii C1 2 e iqvt

_0 0 z' (5.1)L:21 e-iqvt D +:i)
-q 20 0

where q is the integer which minimizes

1- (D10 - D20) -

The equation of motion which was derived and solved by Suhl 7  to describe

the behaviour of spin waves in the ferrites is precisely (5.1), with

particular values for the parameters: the D's, the C's, and q .

Although the coefficients in (5.1) are t-dependent, the equation

can be solved exactly. The following transformation (dropping the primes)

;exp[(D O+C11 +a)t] 0
00
0 V(D +C22 -a)t= l (5.2)
0 exp [20 0

transforms (5.1) into

-a C1 2

C2 1  a-q

if

a I. [(D 20+C1
2) - (DI 0 +C") + iqv]

Equation (5.3) has constant coefficients, however, and so is easily solved

by diagonalization. The resulting solution of (5.1) is then

tie (_iqv/2)t

0-e b 2 e - P t
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where b I and b2 are arbitrary constants,

q q J (5.5)
-(P-iqv/2) + p -(i-iqv/2) -

p = /(1-iqv/2)2 + C2 1 c 12  (5.6)-q q

= (D1 0+d0D -C2 2 )

0 20 0 (5.7)

and

-=(Dj0+C0+D2 0+0) (5.8)

5.2 The Associated Poincar6 Map

The linearized Poincar6 map is completely determined by the solution

of the linear stability problem. It is therefore of interest to determine

the eigenvalues of this map implied by the approximate solution (5.4).

The linearized Poincar6 map, P(t),(see Appendix 1) is defined by

z(t + 2n/v) = L(t)z(t)

It is straightforward to show (see Appendix 4) using (5.4), that the eigen-

values n1,n2  of P(t) are independent of t and are given by

= (-)q e "V (5.9)

As is discussed in Appendix 1, the nature of a normal bifurcation

depends strongly on the values taken by these eigenvalues. To see how the

different possibilities can arise, it is instructive to consider two
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different classes of periodic orbits: those with an associated soft or

relaxational frozen problem and those with an associated hard or oscillatory

frozen problem.

5.3 Soft and Hard Frozen Problems

The matrix [G- 1 G' determining the transverse frozen problem

(see 4.2 and Appendix 3) is a real matrix. Its eigenvalues are therefore

either real or complex conjugate pairs. Two cases will be considered here.

Case 1: A Soft Frozen Problem

The first case is that of [G- (t)V(t)G(t)]lhaving real eigenvalues

at every point on X (t). This means that the normal modes of the frozen

problem are purely relaxational and do not sustain oscillations. The frozen

problem can therefore be regarded as soft.

Since _ _ ' is a real 2 x 2 matrix with real eigenvalues,

its eigenvectors are real. Thus E'(t) and hence J(t) are real matrices

and the Fourier components in (4.8) satisfy

DIm = DT,0 m T = 1,2

Tm

In particular DTO , T = 1,2 , and C' are real. Therefore the definition

after (5.1) gives

q 0

From (5.6), (5.7) and (5.8) one then sees that ) and ; are real and

that v can be either real or pure imaginary.

Case 2: A Hard Frozen Problem

The second case which will be considered is that of [G (t)(t)(t)I'

having a complex conjugate pair of eigenvalues at every point on X (t)

A=



-18-

This means that the normal mode frequencies have a real part and so the

normal modes oscillate. The frozen problem can therefore be described as

hard, or oscillatory.

Since [G-(t)VF(t)G(t)]' is a real 2 x 2 matrix with complex

conjugate eigenvalues, its eigenvectors also form a complex conjugate

pair. It is then seen that the Fourier components in (4.8) satisfy

D =D*
2m 1,-m

C2 2 = C
m -m

C2 1 =Cl
m -m

Thus q is that integer which minimizes

IIm(D 10) - qv/21

Further, (5.6) - (5.8) give that p is imaginary, p is real, and ji

is either real or pure imaginary.

These results for both cases are summarized in Table 2.

5.4 The Properties of the Solution

Several conclusions can now be drawn from the solution (5.4) of the

stability analysis.

Firstly, the implications of the expression (5.9) for the eigen-

values, i1,n2 , of the Poincard map, will be summarized. When one or both

of these eigenvalues passes out through the unit circle in the complex

plane, a bifurcation occurs (see Appendix 1). At a normal bifurcation the

arguments of the eigenvalues determine whether the new stable orbit is

periodic or quasi-periodic. They also provide information about the new

generator which appears, in the spectral analysis of the system described



Frozen Problem

genvalues) Soft Hard

Parameters (Real) (Complex)

1(D C 1 +C1LD 2 0_C2
2) =real !ilm(D 0 =) imaginar

(D 1 L0+ +C2 real Re(D +C") =real
.-( 10 d-- 20+c02  10 0

=real or realo
pur imgnr q 2 pure imaginary

q 0 q E Z:Im(D) -. = mim.

Table 2
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by (1.1), at the bifurcation. The nature of the eigenvalues, as given by

(5.9) and these consequences, are summarized in Table 3.

Secondly, some insight into subharmonic or periodic doubling bifur-

cations can be obtained. Following such a bifurcation, the new orbit is

periodic, with a new generator v/2 in the frequency spectrum. Table 3

indicates that this can only occur when q is odd. If the frozen problem

is soft, §5.3 shows that q = 0. The present theory thus predicts that

subharmonic bifurcations can only occur when the transverse frozen problem,

for either all or part of X0(t) , is hard, that is sustains oscillations

rather than being purely relaxational

When q = 0 , the oscillating off-diagonal terms in (5.1) can cause

instability even when replacing all the coefficients by their average values

13
would indicate stability. This is the phenomenon of parametric resonance,

which occurs in many areas of physics and engineering.

A common feature of parametric resonance is the growth of oscilla-

tions at a frequency, v/2 , equal to half that of the modulating frequency

In the theory of the secondary absorption peak in ferrites,6  q = 1 and

spin waves of frequency half that of the microwave field grow to large

amplitudes. Other examples are provided by the original string and tuning

14
fork experiment which led to the introduction of Matthieu's equation, and

15
Faraday crispations : surface wave instabilities also describable by

Matthieu's equation.

Thirdly, when the frozen problem is soft and q = 0 , only average

values of the coefficients in the full stability equation are retained. That

is, when the transverse frozen problem is purely relaxational, sustaining

no oscillations, the frequency-matching argument of § 4 .1 indicates that,

in the natural set of coordinates defined by the frozen normal modes, the
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Real [Imaginary
PropertyI

Eigenvalues -~1(q even)

of Poincarig 1,2 real T11= T12 complex

Map
(q odd)

Bifurcation or

Instability i+ U 0

condition

New Orbit Periodic Quasi periodic

New Frequency I V (q even) x or V - x

v(dv)v/2 (q odd) where x =(Im(p) + -(-) (mod v)

Table 3

The elgenvalues of the Poincard Map and Their Consequences

(The values of i',u.,q are given in Table 2)
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average values of the coefficients are sufficient to give the basic pro-

perties of the solution. This is the reverse case to parametric resonance

and can be stated more intuitively as follows. If the normal modes asso-

ciated with the stability analysis are purely relaxational, and sustain

no oscillations, then resonant modulation effects are unlikely to be

important.

6. How Reliable is the Simplified Treatment?

The simplification of the stability analysis used in §4 was based

on the successful treatment of an analogous problem , the anomalous micro-

wave absorption properties of ferrites. The simplification was not,

however,derived in any formal way, for example as part of a perturbation

theory approach to the full problem. It is therefore desirable to check

the reliability of this simplification. This is done below in several ways

using, for example, some simple results from the theory of dynamical systems,

the theory of linear differential equations with periodic coefficients, and

some exactly soluble cases.

For simplicity most of these checks will be made for the two cases

described in § .3: the cases of soft and hard frozen problems.

6.1 Four Basic Properties of the Poincard Map

There are four basic properties of the Poincard map which any reason-

able approximation scheme should preserve.

Firstly, in a real dynamical system, the Poincarg map must be real.

Its eigenvalues must therefore be real or complex conjugate pairs. As

indicated in Table 3 this property is preserved by the simplified solution

(5.4).

The eigenvalues of the exact linearized Poincard map t(t) , defined
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on a transverse section at X 0 (t) , are independent of t . It is shown in

Appendix 4 that the Poincare map resulting from the simplified solution

(5.4) preserves this property.

The exact Poincarg map is orientation preserving, that is, the product

~~~ 47t/v 11 whchi
of its eigenvalues is positive. From (5.9) n1n2 = e which is

positive since p is real.
16

Finally, bifurcations of periodic orbits can fall into any of

three categories (see Appendix 1). A single real eigenvalue of the Poincard

map may pass out through the unit circle at +1 or at -1 , or a complex

conjugate pair of eigenvalues may simultaneously pass out through the unit

circle. Table 3 shows that the simplified solution (5.4) preserves this

complete set of possible behaviours.

V1.2 Self-Consistency

The simplification described in §4.1 was based on an assumption

concerning the nature of the solution of the stability analysis. This

assumption can be checked by subtracting from the oscillating (real) fre-

quency of each component of (5.4), the corresponding (real) normal mode

frqquency, Im(DTo), and seeing whether the difference is small compared

to v/2

The differences are

qv/2 + Im(p) - Im(D1 0) (1st component)

and
-qv/2 + Im(p) - Im(D20) (2nd component)

From the definition of q (§5.1) consistency obtains whenever Im(U) < v/2 .

In particular, when p is real, as is the case for example at subharmonic

bifurcations, then the simplification is always self-consistent.



-24-

6.3 Diagonal, Exactly Soluble Cases

If the matrix K'(t) in (4.5) is diagonal, then the simplification

described in §4.3 reduces to replacing the coefficients by their average

values. It is easy to see, in this case, that the resulting simplified

solution always has the exactly correct Poincard map.

This situation occurs in linear systems, for example, and also in

two-mode, n = 2 , problems. In the latter case, the decoupling described

in §2.1 and Appendix 2 reduces the stability analysis to a transverse

problem which is one-dimensional and hence exactly soluble. Using either

the exact or the simplified solution, one obtains the exact Poincarg map

P = exp(f 2r/v Tr(t)dt)

and regains the Poincard orbital stability criterion
1 8

f dt Tr(V(t)) < 0 X0(t) stable

> O. X0(t) unstable

6.4 The Liouville-Jacobi Formula

The stability analysis of a periodic orbit is describable by a set

of linear differential equations with periodic coefficients. Such equations

have been studied extensively, although usually without specific reference

to the stability of orbits. One simple result which can be used, however,

to test the simplification described in § 4.3, is the Liouville-Jacobi

formula.

Consider any set of n linearly independent solutions of the

n coupled equations given by

x= (t)x (6.5)
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where A(t) =A(2'r/v + t) Let X(t) be the matrix whose columns are

18
these n solutions. The Liouville Jacobi-formula is

det _(t) = det X(O) exp( t TrA(t)dt')

This formula means that if 21/V Tr A(t')dt' > 0 , det X(t)

grows exponentially in t and so (6.5) must have at least one unbounded

solution. If At) = K'(t), as in (4.5) and (6.5) derives from the stability

analysis of a periodic orbit, X0(t) , then X(t) must be unstable. The

simplification described in §4.3 retains all the m = 0 terms on the

diagonal of K'. That means that 2'r/V Tr K'(t)dt is exactly preserved.

The rigorous condition given by the Liouville-Jacobi formula is therefore

always observed by the simplified solution.

VII. Conclusion

A study of the stability analysis of periodic orbits reveals that

this problem is in many respects similar to the theory of ferromagnetic

6
resonance and spin wave instabilities in ferrites.

Exploiting this similarity enables an approximate analytic solution

of the general three-mode (n=3) stability analysis to be obtained. Pro-

vided Im(p) < v/2 (see equation (5.6)), as is the case for example

whenever subharmonic bifurcations are predicted, the simplification leading

to the solution is self-consistent, and satisfies the rigorous checks set

out in 56. These are based on some general properties of dynamical

systems, the theory of linear differential equations with periodic coeffi-

cients, and some exactly soluble cases.

Regarding the stability analysis as an isolated mathematical problem
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of coupled differential equations with periodic coefficients, in general

does not lead to an analytic solution. However, by exploiting the

context of the equations, namely the stability of a periodic orbit,

an approximate analytic solution of the n = 3 case has been obtained.
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Appendix 1. Mathematical Background for Periodic Orbits

The stability analysis of a periodic orbit, X0(t), which bifurcates

often gives information about the'hew" orbit, XI(t) , which appears after

the bifurcation. This appendix indicates when this information is available

and lists the mathematical results on which it is based.

Al.1 Two Classes of Bifurcation

Most bifurcations of periodic orbits may be grouped into two classes.

Those in the first class will be referred to as "normal" bifurcations. At

a normal bifurcation the domain of attraction of the periodic orbit, X_(t)

remains of finite size as y , in (1.1), increases to 0. At y = 0 , X0(t)

becomes unstable and one or more stable orbits, initially coincident with

X0(t) , start to grow, as y increases, continuously out from X (t) . The

orbit, X (t) , will be related, as described in §§AI.2 and Al.3 , to X0(t).

Normal bifurcations are commonly observed experimentally, examples being in

the Rayleigh Benard convection cell and the Couette-Taylor flow system.

Bifurcations in the second class will be referred to as "inverted".

They are those at which, for y < 0 , X (t) has one or more unstable orbits-o
nearby, which, as y increase to 0 , shrink onto X0(t). The domain of

attraction of X(t) therefore becomes vanishingly small as y increases

to 0 , and hysteretic effects are likely. Orbits in the vicinity of X,(t) are,
after the bifurcation, attracted to orbits which bear no particular rel-ion to X0(t).

In summary, at normal bifurcations of periodic orbits, one or more

stable orbits appear while at inverted bifurcations one or more unstable

orbits disappear.

A linear stability analysis is insufficient to determine whether a

bifurcation will be normal or inverted.
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A1.2 The Poincar6 Map

The Poincarg map is defined by taking a transverse section through a

point X0(t 0 ) on the periodic orbit. Each point X on the section can be

taken as an initial value for a solution of(l.l). This solution, if the

initial point is close enough to X(t 0 ) , will intersect the section

again initially at a point Y, say. The Poincard map maps every point X
section

on the transverse Aonto its "once around image" Y

This map can be linearized in the neighbourhood of X(t0)

The eigenvalues of the linearized Poincarg map, which is real, are either

real or in complex conjugate pairs, and are independent of t0 * Since the

flow is smooth, the map is orientation preserving and the product of all its

eigenvalues is positive. These eigenvalues are also known as Floquet

multipliers.

Result 1 The periodic orbit X0(t) is stable if all the eigenvalues of

the linearized PoincareVmap lie inside the unit circle in the complex plane

and becomes unstable and bifurcates when one or more eigenvalues pass out-

side the unit circle.

16
In almost all cases either one real or two complex conjugate eigen-

values pass through the unit circle at y = 0

Results 2 to 5 apply only to normal bifurcations. They refer to

quantities whose values depend on y., and the results apply to the

limiting values as y - 0.

The periodic orbit X(t) will have a Fourier spectrum with compon-

ents at a fundamental, v , and its harmonics. At a normal bifurcation,

a "new" orbit X (t) will have Fourier components which can be generated

by a set of two generators, {v,v'} . This condition defines v' up to
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multiples of v Use will be made of the modulo notation, defined to

satisfy 0 < a(mod b) < b .

Result 2 If, at a normal bifurcation,

a) one real eigenvalue of the linearized Poincard map passes

through the unit circle, X1 (t) is periodic. The frequency v' (mod v) is

the new fundamental and is v if the eigenvalue is positive and v/2 if

the eigenvalue is negative. [For X1 (t) periodic, the new Fourier

components can be generated by v' (mod v) alone.]

b) two complex conjugate elgenvalues of the linearized Poincard

map pass through the unit circle at arguments e,27-e(0 < e < 27r) , X1(t)

is quasi-periodic and

v'(mod v) = either (6/2) v , or [ 27-6)/27T]v

(The proof of this result only works when the eigenvalues q satisfy

n + 1 + n")

Corollary of Result 2

Whenever a periodic orbit, of fundamental frequency v , bifurcates to

an orbit with no sharp Fourier component at v , for example a strange

attractor, the bifurcation is inverted and hysteresis effects are likely.

A1.3 The Linking Number

The linking number of a curve close to X0(t) can be regarded, when

n = 3 , as the (real) number of times the curve twists around X (t)-0
between leaving a transversal of X (t) and first returning to it. For

n > 3 a linking number can be defined in terms of an appropriate three-

dimensional neighbourhood of X (t).

As stated in §1.2 , the results listed here refer to values of the

relevant quantities as y - 0 at a normal bifurcation.
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Result 3

The linking number, £ , of X1 (t) is the same as the linking number

of an orbit X(t) arbitrarily close to X (t)

For such an orbit, X(t), the equation of motion for X(t) - X_0 (t)

may be taken as linear, and is in fact the stability equation (see §2).

The solution of the stability analysis therefore determines the linking

number of X(t) and hence of X1 (t), the new stable solution.

Result 4

v'(mod v) = v(mod v)

In the case of a normal bifurcation to a quasi-periodic orbit, determining

Z thus determines which of the two possibilities in Result 2b,(0/2r)v

or t(21r-6)/2Tr]v, is correct.

The next result has not been proven but seems a reasonable con-

jecture.

Result 5

Of the Fourier component amplitudes of XI(t) at frequencies

v' + my for integral m , the fastest growing one is Zv

(If v' = v , the Fourier components v' + my already have a non-

zero amplitude at the bifurcation, so "fastest growing" can be taken

to mean having the largest discontinuity in the derivative with respect

to y .)
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Appendix 2. Decoupling the Longitudinal and Transvers Motion

For an n-mode system, the coordinate transformation set out in §4.2

ensures that the n'th coordinate axis is always parallel to the orbit at

X (t) , and the other axes are always orthogonal to it. It will be shown here

that KTn = 0 for T = l.....n-l where K(t) is given by (4.5). Equation

(4.4) then indicates that, to linear order , the motion of the transverse

components is completely unaffected by the longitudinal component, and can

be considered separately.

From (4.5)

- ( jn n (A2.1)
K (t) " .JTJ - - n)

Using (4.2) and (4.4) gives

J. (t) = F.(X (t)) (A2.2)

Thus

Jjn k9 Xk Xokt

=f Vj k Fk (X--0(t))
k

(V -)jn

using (A2.2). Substituting this into (A2.1) gives

K Tn(t) = 0 T = 1,2,...,(n-l)

as required

(This decoupling clearly occurs whether or not X,(t) is periodic.)
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Appendix 3. The Frozen Problem

The purpose of this appendix is to make the notion of the frozen

problem, described qualitatively in §2.2, precise and to prove that this

"freezing out" of the longitudinal motion reduces the stability analysis to

that of a fixed point.

The first step in defining the frozen problem is transforming to a

fixed set of axes, one of which is orthogonal to all the others and parallel

to the periodic orbit at one point on it, X0(t0 ) say. The matrix G(t0)

where G(t) is defined in §4.2, achieves this transformation. If

- .(t 0 )U then (1.1) becomes (dropping t0  from the notation)

(t) = FG-F(U (t)) (A3.1)

The frozen probelm is then obtained by setting the longitudinal velocity

equal to zero. That is, the frozen problem is

VT(t) = [G-F( V(t))]T T = 1,2,...,n-1 (A3.2)

n M)= 0 (A3.3)

The orbits V(t) and V(t) corresponding to X(t) and X0 (t) in

the full stability problem are specified by the initial conditions

- (0) U (A3.4)

V(O) = + v(o)

where

GU X (t) (A3.5)

and

Vn (0) 0 (A3.6)
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This last condition means that the test particle, as well as the reference

particle, is at t = 0 on the hyperplane transverse to the orbit, i.e.

is between the two "glass sheets" of §2.2

If v(t) =V(t) - y~t) , then to linear order in v , A3.2)and

(A3.3)give

VT= G-1V(t)9 v]T T =1.,n-l (AM7)

V=0 (A3 .8)

where

= IF' (A3.9)

Equations AM. to A3.9 constitute the frozen stability problem.

From (A3.6) and (A3.8) , v~ (t) = 0 for all t .This means that

(AM.) can be written purely in terms of the (n-1) transverse components.

It can also be seen that V (t) = V ,(0) for all t. From (A3.2),

VOT(O = (Ei-( .Y0(O))]T

= [G- F(XO(t ))1

= 0 for T -l,2,...,n-1

since XF(X (t )) is the n-th column of G (§4.2). Combining this result

with (A3.3) gives that V!()-0ads ~() y 3 0 for all t

This means, though, that WO~t (see (A3.9)) is independent of t

That is the frozen stability problem (A3.10) is the stability analysis of a



-34-

fixed point, V0 (t) = y(0) , and so the coefficients , (_t) = (0)

are constants.

Appendix 4. The Eigenvalues of P(t)

The purpose of this Appendix are firstly to show that the simplified

solution (5.4) has a Poincarg map L(t) whose eigenvalues are independent of

t , and secondly to determine these eigenvalues.

For the exact solution ar operator T(t,t') can be defined such that

Z'(t') = i(t,t')z'(t) (A4.1)

It satisfies

1,(t +-- t' +-) Tf (t,t') (A4.2)

These two results together mean that

P-(t) = _- (t, t')L(t')(t,1t ' )

so that the eigenvalues of the exact Poincarg map, 1(t) are independent of

t .

If z'(t) is the simplified solution, the same result is established

by finding an operator T(t,t') which satisfies (A4.1) and (A4.2) for that

solution. Such an operator can easily be constructed using (5.4) . It is

( t) 0 o1V)
e 2( B ep ) 0 B3)

0 e 2 -1(1 0 e 2

(A4.3)
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which is easily seen to satisfy (A4.1) and (A4.2)

Hence the eigenvalues of P(jt), as determined from the simplified

solution, are independent of t.

From (A4.1),

~(t =I~~t+ 2-r

Putting t = 0 and using (A4.3) then shows that the eigenvalues of the

Poincard map associated with the simplified solution are

27r(j± )

n1,2 =(_)q eV
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